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The universal R matrix of the two-parameter deformed quantum group Uqs(SU (1,
1)) is derived. In previous work we suggested a method to derive the universal
R matrix of the two-parameter deformed quantum group Uqs(SU (2)). This method
is different from that of the quantum double; it is simple and efficient for quantum
groups of low rank at least. This paper studies the universal R matrix of the two-
parameter deformed quantum group Uqs(SU (1, 1)) using the same approach.

The two-parameter deformed quantum group Uqs(SU (1, 1)) has three
unitary irreducible representations (Jing and Cuypers, 1993): a positive dis-

crete series, a negative series, and a continuous series. The generators of the

two-parameter deformed quantum group Uqs(SU (1, 1)) can be obtained from

a Jordan±Schwinger realization in terms of two-parameter deformed bosonic

creation and annihilation operators:
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where {a 1
i , ai , Na

i } and {b 1
i , bi , N b

i } (i 5 1, 2) are independent and satisfy

the commutation relations
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where the deformation brackets are defined as

[x]qs 5 s1 2 x[x] 5 s1 2 x(qx 2 q 2 x)/(q 2 q 2 1), [x]qs2 1 5 sx 2 1[x] (5)

It is easy to check that
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0 ]

(6)

For simplicity, we will omit the index a (b) in the following discussion.

The quantum Uqs(SU (1, 1)) is a Hopf algebra; its coproduct is (Yu et al.,
1996, 1997a, b)

D (L 0) 5 L 0 ^ 1 1 1 ^ L 0 (7)

D (L 6 ) 5 L 6 ^ (sq) 2 L 0 1 (s 2 1q)L 0 ^ L 6 (8)

We define an inverse of the coproduct D 5 T D , where T is the twisted

mapping, i.e.,

T (x ^ y) 5 y ^ x, " x, y P Uq (SU (1, 1)) (9)

So the following relation holds:

D (a)R 5 R D (a), a P Uq (SU (1, 1)) (10)

with R is the universal matrix and can be written as

R 5 o
i

ai ^ bi (11)

Accordingly, Eq. (11) satisfies the Yang±Baxter equation (Yang, 1967; Bax-

ter, 1972)

R12R13R23 5 R23R13R12 (12)

where

R12 5 R ^ 1, R13 5 o
i

ai ^ 1 ^ bi , R23 5 1 ^ R

For convenience, let x and x 8 stand for the first and the second operator

in the tensor product Uqs(SU (1, 1)) ^ Uqs(SU (1, 1)), respectively. Therefore
Eqs. (7), (8), and (10) take the form, respectively.

D (L 0) 5 L 0 1 L 80 (13)

D (L 6 ) 5 L 6 (sq) 2 L 8
0 1 (s 2 1q)L 0 L 86 (14)

D (L 0)R (x, x 8) 5 R (x, x8) D (L 0) (15)

D (L 6 )R(x, x 8) 5 R(x, x 8) D (L 6 ) (16)
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In order to get the solution of Eqs. (15) and (16), we let

R (x, x8) 5 o
l 5 0

`

Cl(L 0, L 80)L
l
2 L 8l

1 (17)

where Cl (L 0, L 80) is a functional of the operators L 0 and L 80 as well as paramart-

ers l, q, and s.
To obtain nontrivial results, we have to substitute Eq. (17) into Eq. (16):

s 2 L 8
0 1 l qL 8

0 1 l Cl (L 0 2 l, L 80 1 l) 5 (sq) 2 L 8
0 Cl (L 0 2 l 1 1, L 8

0 1 l) (18)

(sq) 2 L0 1 l Cl(L 0 2 l, L 80 1 l) 2 (s 2 1q)L0 Cl(L 0 2 l, L 80 1 l 1 1)

5 s 2 2L0 2 L 8
0 qL 8

0 1 l 1 1[l 1 1]qs
2 1[2L 0 2 l]Cl 1 1(L 0 2 l 2 1, L 80 1 l 1 1) (19)

s 2 L0 2 l q 2 L 0 1 l Cl(L 0 2 l, L 80 1 l ) 5 (s 2 1q)L0 Cl(L 0 2 l, L 80 1 l 2 1) (20)

(sq) 2 L 8
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5 s 2 L0 2 2L8
0 q 2 L0 1 l 1 1[l 1 1]qs[2L 80 1 l] Cl 1 1(L 0 2 l 2 1, L 80 1 l 1 1) (21)

We let

Cl (L 0, L 80) 5 CÄ ls
aL 0L 8

0 1 bL0 1 cL 8
0q dL 0L 8

0 1 eL0 1 fL 8
0 (22)

On the substitution of Eq. (22) into Eqs. (18) and (20, respectively, we have

a 5 0, b 5 c 5 l, d 5 2, e 5 2 l, f 5 l (23)

The recurrence formula is easy to get

CÄ l 5 (q 2 2 2 1)lq 2 l(l 2 1)/2 /[l]! (24)

where we have CÄ 0 5 1. Equation (17) can be rewritten as
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l 5 0

`
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Let us check whether Eq. (25) holds for the Yang±Baxter equation,

R (x, x 8)R (x, x 9)R (x8, x 9) 5 R (x8, x 9)R (x, x 9)R (x, x 8) (26)

The left-hand side of Eq. (26) is

R (x, x 8)R (x, x9)R (x8, x 9)
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The right-hand side of Eq. (26) is

R (x8, x 9)R (x, x 9)R (x, x 8)

o
M ,N 5 0

`

q2L 0L 8
0 1 2L0L 9

0 1 2L 8
0L 9

0 q 2 M(L0 2 L 8
0) 2 N(L 8

0 2 L 9
0) 1 NM

3 sM(L0 1 L 8
0) 1 N(L 8

0 1 L 9
0) L M

2 L 9N
1 o

L 5 0

min(M ,N)

CÄ N 2 lCÄ lCÄ M 2 lq
l(2L 8

0 2 2M 1 l )

3 sl( 2 2L 8
0 2 2N 1 l ) 1 NM L 8N 2 l

2 L 8M 2 l
1 (28)

On the other hand, we have for all nonnegative integers M and N

o
l 5 0

min(M ,N)

CÄ M 2 lCÄ lCÄ N 2 lq
2 l(2L 8

0 1 2N 2 l)s 2 l(2L 8
0 2 2M 1 l ) 2 NML 8M 2 l

1 L 8N 2 l
2

5 o
l 5 0

min(M ,N)

CÄ N 2 lCÄ lCÄ M 2 lq
l(2L 8

0 2 2M 1 l)s l( 2 2L 8
0 2 2N 1 l ) 1 NM L 8N 2 l
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1 (29)

From Eqs. (27)±(29), we conclude that Eq. (26) is the universal R matrix of

the two-parameter deformed quantum group Uqs(SU(1, 1)).
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